产品
行业

LED照明设计之“热解决方案”

2014-08-01    来源:中国节能网
0
[ 导读 ]: LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学等方面对如何运用LED
   LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学等方面对如何运用LED特性的设计进行解说。

  近年来,随着电子产品的高密度、高集成度,热解决方案的重要性越来越高,LED照明也不例外,也需要热解决方案。虽然白炽灯和荧光灯的能量损失大,但是大部分能量都是通过红外线直接放射出去,光源的发热少;而LED,除了作为可视光消耗的能量,其它能量都转换成了热。另外,由于LED封装面积小,通过对流和辐射的散热少,从而积累了大量的热。

  热解决方案是?

  接下来来考虑怎么制定热解决方案。热解决方案简单的说就是解决因为热产生的各种问题。主要有:

  1. 因为热膨胀导致弯曲和龟裂

  2. 电子电路的运行障碍

  3. 材料品质恶化

  除此之外,也会担心如果发热会不会损坏设备?为了避免这些问题,要尽量控制电子设备的温度,也就是说有效散热很重要,重点是考虑机器的使用环境和安装方法制定最佳的热解决方案。 下面列举了由热导致的问题。后半部分以LED灯为例,就LED相关的解决方案进行解说。

  由热导致的问题

  因为热膨胀导致弯曲和龟裂

  电子设备由多个零件构成,每个零件的材质都不一样,热胀冷缩的尺度也不一样。因此,当各种材质组合在一起的时候就有可能使材质发生弯曲,膨胀时,产品在连接处因为应力过多就会产生龟裂。

  2.电子电路的运行障碍
  
一般来说,作为热源的半导体元件,有这样一个特性,即当电子设备中的半导体元件温度上升,电的阻抗就会变小。这样就容易陷入“温度上升-阻抗下降-电流增加-热增加-温度上升”的恶性循环,进而容易发生烧断的现象。

  材料品质的恶化

  一般说来,电子设备中使用的材料容易氧化,温度越高氧化越快,如果让这些材料反复经过高温氧化,就会缩短其寿命。同时,反复加热,材料多次膨胀,多次冷缩,会降低材料的强度,从而破坏了材料。

  LED的热解决方案

  下面以LED灯为例,具体讨论LED的热解决方案。
  
 

   要避免电子设备的发热有多种方法。比如,加散热器,在热源周围安置能提供冷气的风扇。前者是通过增加散热面积,来增加散热的通道,后者是使热不在热源周围聚集。但是,正如图1 LED灯的概括图所示,LED封装时不能直接连接散热器,也没有安装风扇的位置。而且内部电源电路板也会产生热量,因此LED灯的散热问题可以说是一个非常棘手的问题。这样,如何有效使用LED安装材质和散热器就变得很重要。

那么如何有效利用LED安装材质和散热器呢?首先必须把握产生热的传热路径。
 

LED元件产生的热通过封装的导线向电路板移动,然后再通过散热器放热。电源电路板产生的热也是如此,通过电路板周围的空气和填充材质,透过散热器向外部散热。

 

热解决方案中重要的是排除传热路径中阻碍传热的因素,比如可以考虑在传热路径中使用导热性能好的材质、扩大路径的断面面积(例如,粗的铜线比细的铜线更容易导热)、涂导热润滑剂使产品的连接部位不留空隙。

另外,即使通过这些提高了导热特性,但如果散热器不向外部散热,内部还是会聚集很多热。因此也必须提高散热器表面的放热特性。典型的方法就是在表面多安装几个散热片,扩大散热器的放热面积。

运用CAE工具,通过仿真验证热解决方案

CAE的运用

  那么怎样验证热解决方法是否有效呢?一种是通过实验测量温度,但是一旦条件改变就要重新测量,效率比较低。因此需要使用CAE软件进行仿真。图2 运用ANSYS解析软件,在LED灯横向摆放时,对LED灯周围的热和空气的流动进行仿真。(ⅰ)(ⅱ)是整个灯的温度分布图,红色部分代表温度高,蓝色部分代表温度低。(ⅲ)(ⅳ)是灯与LED封装周边(盖子内部)的自然对流图,红色箭头部分表示对流速度快,蓝色部分表示对流速度慢。与实际情况相比,这个例子只是一个非常简单的模型,但从某种程度上却能验证产品的温度分布和空气的自然对流。从整个灯的温度分布来看,虽说盖子的温度低,其他部位温度高,但是某种程度上还是处于一个均等的温度分布。这表面产生的热量大部分都转移到散热器上,而且传送路径中没有障碍。散热器可以起到一个散热的作用,但是如果散热特性不好,整个灯的温度就会上升,因此必须注意散热器的形状(安装散热片的大小、形状、个数等)。

 
仿真中需要解析对象的形状、产品特性、条件等各种信息,但是通过想要确认的信息可以区别简易解析模型和详细解析模型,从而有效把握想要验证的热解决方法的好坏。例如,本例是对整个电灯的简易建模,并不能把握LED封装内部详细的温度分布,但是如果对该部分进行详细的建模,就能够确认元件实际的温度。

反复实验,通过仿真修改部分信息就可以简单的进行操作,例如容易把握散热器中散热片的形状和个数对温度的影响。作为仿真用软件,可以直接使用CAD信息进行分析,可以在统一环境中对构造、导热、热流体等进行广泛的分析,而且可以进行各种组合分析。在设计中不仅要考虑热的问题,其他因素也必须考虑,组合分析的难易是熟练进行仿真的一个关键点,这些我们在后面进行论述。

本次仅就热的问题进行了探讨,但也存在即使解决了热的问题,却不能解决光、电的问题的情况。产品重在寿命长、无性能损坏、使用安全,因此我们的课题就是实现整体的最优化设计。下次我们将针对电路和光学设计的问题展开讨论。


 
 
关键词: 解决方案 设计 照明
0
 
[ 技术搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

0相关评论

相关文章

  • 精彩推荐
  • 中国节能网
  • 中国节能网
  • 中国节能网
  • 中国节能网
  • 中国节能网
网站首页  |  关于我们  |  我们宗旨  |  我们使命  |  我们愿景  |  组织机构  |  领导机构  |  专家机构  |  管理团队  |  机构分布  |  联系方式  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  京ICP备050212号-1