产品
行业

某集中供热系统节能技术研究及改进措施分析:供热系统论文

2014-07-17    来源:中国节能网
0
[ 导读 ]: 1. 安装热工仪表,掌握系统的实际运行情况供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与
   1. 安装热工仪表,掌握系统的实际运行情况
供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。  
2. 加强锅炉房的运行管理,是投资少、效果显著的节能措施
⒈司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格;
⒉建立正确、完善、切实可行的运行操作规程;
⒊锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅炉直接补自来水或河水;
⒋严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。
3. 采用分层燃烧技术,改善锅炉燃烧状况
目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。
沈阳惠天公司一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。
对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。中原油田锅炉燃用鹤壁煤,粉末含量高,Φ<3mm的煤粒约占60~70%,采用此技术后,炉渣含碳量降低到15%以下,锅炉效率提高了8%,烟尘排放达到环保标准,年节煤8~10%。
没有空气予热器的锅炉,因为向炉排上送的是冷风,容易造成大块煤不易烧透,使炉渣含 碳量反而略有增加,不宜采用。
4. 采用复合燃烧技术,增加锅炉出力
对大型链条炉排锅炉,当用户热负荷增加,扩建锅炉没有地方时,亦可采用复合燃烧技术,在链条炉排锅炉的炉侧或炉前,增装一套磨煤系统及煤粉喷燃装置,将制成的煤粉吹入炉膛内,依靠炉排上的火床,引燃煤粉,使在炉内形成层燃和室燃两种燃烧方式。采用复合燃烧,需要增加燃烧空间,加大除尘力度,但可以提高锅炉出力和效率。沈阳惠天公司在29MW的热水锅炉应用此技术后,出力提高20~30%,炉渣含碳量降低4.5%,锅炉热效率提高12.5%。
5.中小型锅炉采用煤渣混烧、减少炉渣含碳量
中小型锅炉、采用煤与炉渣混烧法是一种投入较很小,效果很好的节煤措施。煤与炉渣的比例约为4:1,充分混合后入炉燃烧,煤中掺了颗粒较大的渣,减少了通风阻力,送风更加均匀,增加了煤层的透气性,提高了燃烧的稳定性,使炉渣含碳量显著下降。北京市昌平县房管局供暖服务公司,海淀区房屋土地管理局房屋设备经营管理处及天津市房屋供热公司在14MW锅炉上采用煤与渣混烧法后,炉渣含碳量分别下降到3%~8%。
6. 改善锅炉系统的严密性,降低过剩空气系数
锅炉的过剩空气系数是评价锅炉燃烧状况的一个重要参数,只有过剩空气系数达到设计值时,锅炉才能在最经济的状态下燃烧,因此要采取防止锅炉本体及烟风道渗漏风的措施,改善锅炉及烟风道的严密性,降低过剩空气系数以提高锅炉的效率和出力
沈阳惠天公司对锅炉除渣系统进行水封,同时对鼓、引风系统、炉墙、烟道等漏风点封堵后,锅炉热效率由68%提高到76%,过剩空气系数从2.9下降为2.1,锅炉不仅升温快,而且炉渣含碳量也能降到12%以下。
7. 保证锅炉受热面的清洁,防止锅炉结垢
锅炉的水冷壁、对流管束、省煤器、空气予热器等受热面积灰和锅炉结垢是影响锅炉传热的一个主要因素,据有关试验测定,水垢的热阻是钢板的40倍,灰垢的热阻是钢板的400倍,因此要建立及建全锅炉水质管理和定期的除灰制度,保证锅炉用水的水质和锅炉受热面的清洁,以提高锅炉效率和设备使用寿命。
8. 大、中型锅炉采用计算机控制燃烧过程,提高锅炉效率
对大中型锅炉房应逐步建立微机系统实现锅炉燃烧过程自动控制。由于锅炉燃烧过程是一个不稳定的复杂变化过程,各种各样的因素都会引起工况的变化,只有实现锅炉燃烧的自动控制才能达到锅炉的最佳燃烧工况,热效率达到最高。
北京北辰热力厂经过多年努力,采用两台PLC工控机对9台35t/h的蒸汽锅炉进行集中管理,实现锅炉燃烧自动控制。根据负荷状况,对蒸汽压力、流量、煤量、炉膛温度、排烟温度、烟气含氧量进行综合分析和寻优调整,以达到人工操作难以达到的效果,同时还可以根据煤质的好坏,加湿程度等因素适当调整参数,以达到最佳燃烧工况。几年来运行工况一直平稳,吨汽标煤耗平均下降9.8kg/t,炉渣含碳量降低1.37%,效果显著。
9. 热水锅炉加装热管省煤器,利用排烟热量提高锅炉进水温度
当热水锅炉排烟温度偏高时,在锅炉上加装热管省煤器,降低排烟温度,并提高锅炉进水温度,提高热效率。“热管”是一种利用管内工作液体的两相变化,以潜热为主进行传热的新型高效传热元件,节能效果明显。沈阳惠天公司一台7MW热水炉采用此技术后,锅炉出力提高了4.4%,排烟温度降低了30℃。
10. 改变大流量、小温差的运行运行方式,提高供水温度和输送效率
目前国内供热系统,包括一次水系统和二次水系统都普遍采用大流量小温差的运行方式,实际运行的供水温度比设计供水温度低10~20℃,循环水量增加20~50%。此种运行状态使循环水泵电耗急剧增加(50%以上)、管网输送能力严重下降、热力站内热交换设备数量增加。其原因除受热源的限制不能提高供水温度外,主要是因为管网缺乏必要的控制设备,系统存在水力工况失调的问题,为保证不利用户供热而采取的措施。因此,应该在供热系统增加控制手段,解决了水力工况失调后,将供水温度提高到设计温度或接近设计温度,以提高供热系统的输送效率、节约能源,并为用户扩展打下良好基础。太原市热力公司在太原第一热电厂供热系统上采用了分阶段改变流量的质调节运行方式,提高了初寒期的热网供水温度,循环水量减少约25%,一个采暖季循环水泵节电近200万度,减少运行费用近83万元。
11.风机、水泵采用调速技术,更换压送能力过大的水泵,节约电能
风机、水泵的选择和配置其能力都有一定的富裕度,这是因为:
⒈风机、水泵选型时要求扬程有一定裕度,而且风机、水泵规格不可能与需要完全一致,一般选型结果都稍大;
⒉在运行过程中荷载(扬程、流量)常有波动变化,小荷载时风机、水泵的能力会进一步富裕;
⒊热网建设有一发展过程,循环水量逐年增加,系统满负荷前水泵能力富裕很大。
风机、水泵采用调速技术,可以及时地把流量、扬程调整到需要的数值上,消除多余的电能消耗。一般都能达到30%以上的节电效果。长春市热力(集团)有限责任公司,在1997和1998两年内,将58台水泵改造为变频调速泵后,节电率达40~60%,投资回收期为1.2个采暖期;白城热力公司于1999年在43台水泵上加装变频调速装置后,节电率为40~50%,采用调速技术所增加的投资,一般在一个采暖季内通过减少电费支出就能得到回收。
但对压送能力过大的水泵,采用调速技术来降低水泵扬程,将导致水泵在低效区工作,达不到预期的节能效果,因此,应根据实际运行资料的分析更换水泵。长春市热力(集团)有限责任公司96年更换了5台循环水泵,节电率达40~70%;97、98年进一步更换155台水泵后电耗比改造前下降46.1%,年节电800万度,两年共创经济效益945万元,投资回收期约为0.6个采暖期。郑州市热力公司96年投资40万元,更换了26台水泵,年节电90万度,节省电费45万元。
目前常用的水泵变速装置有变频器和液力耦合器两种。采用变频器效率高、调速范围大,但投资费用高且管理比较复杂;采用液力耦合器效率低、调速范围小,但投资费用少且维护简单。采用何种调速设备、设备功率如何选定、是否需要同时更换风机或水泵,应根据实际情况经技术、经济比较后确定。
12. 推广热水管道直埋技术,降低基础投资和运行费用
热水管道直埋技术在国内使用已有经验。《城镇直埋供热管道工程技术规程》(CJJ/T81-98)也已于1999年6月1日起颁布实施。直埋敷设与地沟敷设比较,不仅具有节省用地、方便施工、减少工程投资(DN≤500,管径越小越明显)和维护工作量小的优点外,由于用导热系数极小的聚氨酯硬质泡沫塑料保温,热损失小于地沟敷设。尤其是长期运行后,地沟管道的保温层会产生开裂、损坏以及地沟泡水而大幅度增加热损失,而直埋管道不存在上述问题。根据烟台经济技术开发区热力公司1998年冬季实测结果,DN800地沟管道每公里温降为0.75℃,而DN500直埋管道的温降仅为0.34℃,按同类敷设方式的管道,管径越大温降应越小推算,DN800直埋管道的温降将更小。建议在DN500以下管道积极推广直埋敷设。推广时应注意使用符合产品标准的预制保温管和管件,并保证设计和施工的质量。由于大口径(DN≥600mm)管道直埋的技术数据和使用经验不够,实施时可能会发生问题,使用时要填重。
13. 推广管道充水保护技术,防止管道腐蚀
国内部分非常年运行的供热系统,采取夏季放水检修,冬季投产前充水的作法。由于系统放水后不及时充水,空气进入管道而造成管内壁腐蚀。所以非常年运行的供热系统应积极推广夏季管道充水保护技术,在夏季检修后及时充满符合水质要求的水,既可省去管道投运时的充水准备时间,又可防止管内壁腐蚀。
14. 热力站入口装设流量控制设备,解决一次水系统水力失调现象
目前,供热系统的一次系统,因通过每个热力站的水量得不到有效地控制而造成的水力失调和能源浪费的现象很严重。因此应在热力站入口装设流量控制设备以解决一次水系统水力失调问题。对于当前国内供热系统绝大多数采用的定流量质调节运行方式应装设自力式流量限制器,对于近期即将采用或正在采用的变流量调节的系统应装压差控制器。八十年代末北京市热力公司在热力站入口加装了流量限制器,在热源能力不增加的条件下供热面积由1304万平方米增加到1610万平方米,节约热能约20%。天津市热电公司于1994~1996年在第一热电厂热水管网上安装了148台自力式流量限制器,耗热指标由72W/m2降到44.4 W/m2,扩大供热面积160万平方米。中原油田供热管理处98年在基地北区160万平方米供热系统的16座热力站一次网回水管上,投资26万元加装国产自力式流量控制器后,停用了5台燃油锅炉,年节省燃油费用84万元,循环水量由2300t/h下降到2100t/h。
15. 热力站(或混水站)安装监控系统、实时调节供给用户的热量
为了实现实时控制和调节供给用户的热量,热力站应安装监控系统。
热力站(或混水站)内设有采暖系统、生活热水系统和空调系统,那个系统需要控制,实施什么样的控制水平应根据实际情况确定。当一、二次系统都为质调节、流量基本不变时,根据二次系统的供回水温度控制一次系统的供水阀门,可以使用手动调节阀,自力式调节阀,对于控制要求高、控制过程复杂的,则应考虑配有电动执行机构的计算机控制装置。
先进国家的集中供热间接连接热力站,一般都采用组合式供热机组。该机组包括板式换热器,循环水泵,补水装置,监控仪表和设备,可根据室外温度调节二次水供水温度和供给热量。近年来,我国哈尔滨、天津等地的热力公司安装这种供热机组,运行结果表明,有显著的节能效果。同时还有占地小,安装简单等优点。
国内已经实施监控的热力站,都取得良好的节能效益沈阳惠天热电有限公司沈海热网于1993年在33个间接连接热力站安装了监控系统,并于当年冬季对所辖间接连接热力站进行热耗统计,有监控的热力站,其采暖平均热指标为41.2W/m2而无监控热力站的采暖平均热指标达48.8W/m2,节能率为15%。
16. 改善二次水系统和户内系统,解决小区内建筑物之间和建筑物内部房屋冷热不均,能源浪费的问题
在用户楼栋入口(当几栋楼到干管的系统管道阻力相近时,也可在总分支管上)装设流量控制设备,对各楼之间流量分配进行调节,在管路(一般为立管)上装设平衡阀平衡各立管之间的流量,在每组散热器前装设温控阀控制室内温度,可以有效地解决小区内建筑物之间和建筑物内部房屋冷热不均的问题,不仅节约能源,还为计量收费,用户自由调节室温打下了基础。
北京市热力公司在供热节能示范小区采用上述措施后,有效地解决了竖向失调问题,节约能源20%;山东荣城供热公司在小区供热面积为10万平方米的85%用户入口安装了流量调节装置,基本实现了网络水力平衡,节约热能8%,减少水泵功率25%,做到了当年投资当年回收;吉林热力公司在户内系统压力损失比较大的环路立管上,安装小扬程、小流量和噪音小的三级调速管道泵以提高该环路的压差,改善了供热状况,也取得了较好的效果。
17. 加强管理,控制系统失水是节能和保证安全运行的重要措施
目前国内部分直接连接的供热系统失水情况严重,补水率高的可达循环水量的10%以上。失水主要是用户放水和二次系统以及用户内部系统管网陈旧漏水所致。系统大量失水和热量丢失、影响供热能力,而且一些供热单位还因水处理能力不足,不得不用生水作为热网补水,而造成管网阻塞和腐蚀。因此,必须加强宣传教育、加强管理,采取防漏、查漏、堵漏等有效措施,将失水率降到正常的水平。唐山市热力总公司大部分为直接连接的系统,多年来补水率一直保持在1%以下,取得了很大成绩。对于大、中型供热系统应考虑将直接连接改为间接连接。间接连接一方面可将一次系统和二次系统的水力工况分开彼此不受影响,便于提高一次系统的压力和温度,增加输送能力,保证系统的正常安全运行;另一方面也便于发现失水的部位。
18. 对冬季供暖锅炉,提倡连续运行,分时供暖,节约能源
供暖期热负荷的变化,应采用调整锅炉运行台数的办法解决,即在初、末寒期减少锅炉运行台数,严寒期增多锅炉运行台数,以避免锅炉低负荷运行,提高锅炉运行效率。
利用居民夜间睡眠休息、办公室无人办公采暖房间需要的温度可以适当降低的条件,对住宅和公建采用分时供暖,降低供热参数以减少供热量可以达到节能的目的。包头市热力公司采用分阶段改变一次网供水温度和对用户实施分时供暖的办法;天津市热电公司在热力站中通过控制  中文摘要:在我国,建筑能耗约占总能耗的1/3,而北方采暖地区供热采暖能耗占其建筑总能耗的65%以上,因此我们必须贯彻执行“坚持开发与节能并举,把节能放在首位”的能源方针。
集中供热系统是一个系统工程,是由热源、输配管网、热用户组成的一个严密的整体,同时又是一个复杂的综合工程。集中供热管网是一个动态的流体网络系统,运行工况受工作条件、环境、时间、制造和施工等多方面的影响。水力工况失调和管网热力损耗、水泵选型布置不合理是供热管网普遍存在的现象,如何克服水力失调,实现供热管网的水力平衡,减少输配管网的热力损耗,提高管网的经济性、安全性和可靠性,改善供热质量,是供热行业所面临的问题。正是在这样的背景下,笔者针对集中供热系统中管网节能的环节进行了探讨和研究,在学到的相关理论和方法的支撑下,详细地分析了吉林省某油田生活区外网的能耗情况,并对其存在的问题进行了分析和研究,有针对性地提出改造和优化的措施。
首先对系统的混水直供方式进行了分析,提出了供水和运行方案,对其经济性进行了分析;其次对水泵在运行中的节能潜力进行发掘,提出了水泵停开运行等节能措施;第三、研究了供热管网水力失调的形式、影响、表现及原因等内容,提出了解决水力失调问题的途径和办法;第四、结合其热网的具体情况,对热网特性进行了分析,提出了运行调节方案,绘制了热网的调节曲线;第五、针对系统失水严重的问题分析了运行数据,提出了有针对性的解决方案。
本文的研究目的是通过分析集中供热管网系统各个环节的节能潜力,探讨一些切实可行的改造措施,提供一定的思路和方法,希望为集中供热行业做一些有价值的贡献。
关键词:集中供热、节能、混水、水力失调、运行调节、失水。

目录。
第一章绪论。
1.1课题背景。
1.2我国集中供热的发展概况。
1.3国外集中供热的发展概况。
1.4我国集中供热存在的问题。
1.5研究的内容与目的。
第二章集中供热的相关理论研究。
2.1混水直供。
2.1.1概述。
2.1.2混水供水的特点。
2.1.3混水的流量与温度的关系式。
2.1.4混水供热系统的三种基本形式。
2.2运行调节。
2.2.1供热运行调节的意义。
2.2.2供热调节的方法。
2.3循环水泵的调节控制。
2.3.1改变管路特性曲线法。
2.3.2改变水泵特性曲线法。
2.3.3水泵的变频调速。
2.4水力失调。
2.4.1水力失调产生的原因。
2.4.2解决水力失调的措施。
2.5失水。
2.5.1热网失水原因以及危害。
2.5.2热网失水经济损失分析。
2.5.3减少失水的可行措施。
第三章吉林省某油田生活区集中供热概况。
3.1供热运行概况。
3.2供热运行数据分析。
3.2.1五大系统运行情况。
3.2.2存在的问题。
第四章集中供热系统的运行优化。
4.1混水系统节能分析。
4.1.1采暖供水方案优化。
4.1.2混水系统的初调节。
4.1.3混水直供热网监控系统。
4.1.4利用混水供热应注意的问题。
4.2水泵的节能分析。
4.2.1水泵选型合理的几个要素。
4.2.2目前各泵房存在的问题。
4.2.3水泵运行改进方法。
4.3减少管网水力失调节能。
4.3.1水力失调问题分析。
4.3.2水力失调的解决方案。
4.4运行调节分析。
4.4.1运行方案比较。
4.4.2运行调节曲线的绘制。
4.5供热系统的水耗分析与节能途径。
4.5.1失水数据分析。
4.5.2实际情况分析以及建议。
第五章结论。
参考文献。
致谢。

第一章绪论。
1.1课题背景。
在各种能量消耗中,建筑是用能大户,在我国,目前城镇民用建筑供暖能耗按标准煤计算平均约为20kg/㎡,城镇民用建筑供暖面积约为65亿㎡,此项能耗约占民用建筑总能耗的56%~58%,1996年全国能源消费总量为13.88亿吨标准煤,而建筑使用的能源约占全国商品总能耗的35%。随着现代化建设的发展和人民生活水平的提高,舒适的建筑环境日益成为人们的生活需要。集中供热、热电联产对于节约能源、保护环境、适应国民经济的持续发展,提高人民生活水平发挥了巨大作用,是国家大力倡导、积极扶持的产业之一。如何提高人民生活质量,改善城市居住环境,完善城市基础设施功能,稳定社会、促进城镇发展已经成为各级政府重要的工作内容之一。因此,集中供热作为城市基础设施的组成部分,在不断加强科学管理、提高能源利用率、扩大城市热化率、保证供热效果方面既是政府极为关注的工作,也是各地供热企业孜孜追求的目标。
目前我国正处在城市化高速发展的过程中,为适应城镇人口飞速增长的需求和不断改善人民生活水平的需要,2020年前我国每年城镇新建建筑的总量将持续保持在10亿㎡左右,到2020年,新增城镇民用建筑面积将达到100~150亿㎡。
由于人民生活水平提高,供暖需求线不断南移,新建建筑中将有70亿㎡以上需要供暖,按照目前建筑能耗水平,则需要增加的用于供暖的能量按标准煤计达1.4亿吨/年,需增加的用电量达4000~4500亿千瓦时/年,这将给我国能源供应带来巨大压力。随着城市数量增加,城市人口增多以及人民生活水平的进一步的提高,对供热的数量和质量要求也必然会增加和提高。国家“十一五”规划明确提出,“十一五”期间,全国单位GDP能耗要从2005年的1.22吨标煤/万元,下降到0.98吨标煤/万元,单位GDP要节能20%,全国要节约2.4亿吨标准煤,其中建筑节能要达到1.01亿吨标煤。城市供热系统节能是建筑节能的重要组成部分,《民用建筑节能设计标准(采暖居住建筑部分)》提出节能50%的标准,所谓节能50%,其中建筑物节能率应达到30%,供热系统的节能率应达到20%。要实现这个目标,就必须实现供热系统的节能控制。据有关资料调查显示我国供热系统目前运行水平其节能的潜力是比较大的,节能的重点是提高管网输送效率和热源运行的平均效率。为了保证集中供热正常运行,提高系统效率,降低能耗及热能损失,同时为了提高系统稳定性,保证用户室内舒适性,应提高管道保温性能、控制管网失水,遏制水力失调造成的热力失调[1-4]。
供热行业作为对国民经济发展有着全局性、先导性影响的基础产业,与人们的生活息息相关,由于当前能源和环保问题越来越多地受到关注,能源节约、环境保护、经济可持续发展己成为我国的基本国策。目前,对城市供热的要求已不仅仅在于规模的不断扩大,而且对供热系统的合理性、经济性,特别是供热系统的能源有效利用率及供热可靠性提出了更高的要求。供热系统建成后,供热企业提高经济效益的重要方面是降低运行成本,热力公司运行成本主要由热能消耗费用、热能输送(如循环水泵和补水泵的电耗)费用以及管理和操作人员费用等项组成,前二项占主要部分。因此,建立热网微机监控与热力站自动控制系统,提高供热管理水平,消除水力失调,节能降耗成为热力公司当前非常迫切的任务。
1.2我国集中供热的发展概况。
我国城市供热是从第一个五年计划开始发展起来的,当时将热电联产作为我国发展电力工业的重要方针之后,热电联产发展很快,新增单机6MW以上的热电机组2.4GW,占同期新增火电机组的20%。长春第一汽车制造厂建成自备电厂后,相继在西安、石家庄、太原、吉林、哈尔滨、兰洲、包头、武汉、成都、富拉尔基、北京出现了以热电厂为热源的集中供热系统。从1953年至1965年,我国的供热事业发展的很快,特别是热电联产,为我国的热电事业奠定了基础,但是从1965~1980年期间,由于十年动乱的影响,整个国民经济发展缓慢,热电联产事业的发展也基本停步,新增热电机组仅有199×104KW,1980年供热机组占火电机组容量由1965年的20%下降到11%。1980年6月,党中央提出我国能源实行开发和节约并重的方针,把集中供热特别是热电联产重新提到议事日程上来,尤其是国务院以国发[1986]22号文件转发《关于加强城市集中管理工作的报告》以后,集中供热事业有了较大的发展,在其后颁布的“节约能源管理暂行条例”第29条规定:“发展集中供热,应当统一规划。对现有的分散供热系统,必须积极采取措施,逐步淘汰低效锅炉,实行集中供热”,2003年建设部出台《关于城镇供热体制改革试点工作的指导意见》(建城[2003]148号),2006年建设部决定组织开展《城市集中供热管网改造“十一五”规划》的编制工作,规划2006年~2010年间城市集中供热管网现状、存在问题、措施意见;城市集中供热管网改造技术方案、管网改造建设规划、管网改造投资估算,由此可见我国政府对供热的重视。近年来,随着城市化进程的加快及保护环境、节约能源观念的增强,在借鉴国内外城市集中供热系统规划、设计、施工、运行成功经验和失败教训的基础上,城市集中供热在“三北”地区发展很快,尤其是在国家实施西部开发战略以来,西部的很多城市相继新建、改建或扩建了城市集中供热系统,使我国的城市集中供热系统逐步向大规模、长距离、高参数方向发展。
2001年底统计数据表明,全国663个城市中有294个城市建有集中供热系统,供热总面积已达到146328×104㎡(其中:住宅为95799.33×104㎡);年供热量为137847×104GJ(其中:蒸汽37655×104GJ,热水100192×104GJ)。在年供热量中,锅炉房供热量为74209×104GJ,约占74.2%,其余由热电联产工程承担;供热管道总长度达到53109km(其中:蒸汽管道9183km,热水管道43926km),从业人数达到22万余人;严寒地区的集中供热普及率一般达到了60~90%。截止2004年,我国城市集中供热面积已达21.6亿㎡,年供热量188086×104GJ。目前,我国集中供热热水管网的设计温度已达到150℃,设计压力为1.6~2.5MPa,最大供热半径达19.5km,最大管径达到1400mm;蒸汽管网最高温度已达300℃,压力一般为1.OMPa,最大供热半径为6~7km,最大管径达到1000mm。2005年的《中国城市建设统计年报》显示:我国2005年底城市蒸汽集中供热能力为106723t/h,其中热电厂为82686t/h,占77.48%,锅炉房为23240t/h,占21.77%。供热总量为71493万GJ,热电厂为58059万GJ,占81.2%,锅炉房11927万GJ,占16.68%,蒸汽管道长度为14772公里。
“节能”、“降耗”和“减排”是近几年来国家在各种文件中反复提及的词汇,国家明确提出实施建筑节能,改善居室条件,加强环境保护,制定了一系列技术法规和标准。
1987年9月25日原城乡建设环境保护部、国家计委、国家经委、国家建材局以(87)城设字第514号文,下达了“关于实施《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-86)的通知”,正式提出了要在1995年以前达到采暖居住建筑在1980~1981年当地通用设计能耗水平的基础上节能30%,这就是“八五”期间已经全面实现的建筑节能第一步的工作目标。
1996年9月建设部颁布了《建筑节能技术政策》,提出了节约建筑能耗,合理利用能源的综合系统工程措施。
1997年建设部、国家计委、国家经贸委、国家建材总局以建科[1997]37号文,下达了“关于实施《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-96)的通知”,正式提出要在“九五”(1996~2000年)期间实现建筑节能50%的第二步工作目标。
1997年11月1日我国颁布了新中国第一部《节约能源法》,其中第37条对建筑节能做了明确规定,使我国的建筑节能走上了法制轨道。
1999年11月在北京召开的第二次全国节能工作会议上又提出了“十五期间将实现第三步,再节能30%的工作目标,进一步明确了建筑节能是一项长期的技术政策。
2000年2月18日建设部第76号令发布了《民用建筑节能管理规定》,2000年10月1日起施行,严格的规定了工程建设单位、设计单位、施工单位未执行节能标准和设计规范的经济处罚办法,国家鼓励发展节能门窗的保温隔热和密闭技术。
2005年11月10日建设部第143号更新了《民用建筑节能管理规定》,鼓励发展建筑节能技术和产品,如新型节能墙体和屋面的保温、隔热技术与材料以及节能门窗的保温隔热和密闭技术;新建民用建筑应当严格执行建筑节能标准要求,民用建筑工程扩建和改建时,应当对原建筑进行节能改造;既有建筑节能改造应当考虑建筑物的寿命周期,对改造的必要性、可行性以及投入收益比进行科学论证。节能改造要符合建筑节能标准要求,确保结构安全,优化建筑物使用功能;鼓励发展集中供热和热、电、冷联产联供技术及供热采暖系统温度调控和分户热量计量技术与装置;寒冷地区和严寒地区既有建筑节能改造应当与供热系统节能改造同步进行。采用集中采暖制冷方式的新建民用建筑应当安设建筑物室内温度控制和用能计量设施,逐步实行基本冷热价和计量冷热价共同构成的两部制用能价格制度。
2006年8月6日国务院颁发国发〔2006〕29号《关于加强节能工作的决定》,指出为加快建设节约型社会,实现”十一五“规划纲要提出的节能目标,重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。大力发展节能省地型建筑,推动新建住宅和公共建筑严格实施节能50%的设计标准,直辖市及有条件的地区要率先实施节能65%的标准。建立固定资产投资项目节能评估和审查制度。对未进行节能审查或未能通过节能审查的项目一律不得审批、核准,从源头杜绝能源的浪费,对擅自批准项目建设的,要依法依规追究直接责任人的责任。
2006年9月15日建设部发布建科[2006]231号关于贯彻《国务院关于加强节能工作的决定》的实施意见指出:建立新建建筑市场准入门槛制度,对超过2万平方米的公共建筑和超过20万平方米的居住建筑小区,实行建筑能耗核准制。
完善建筑节能标准体系,组织编制建筑节能设计、施工、验收、检测、检验、评价和既有建筑节能改造、可再生能源建筑应用、建筑用能系统运行节能、节能管理等方面的标准规范。加强节能标准设计系列图集的编制,完善建筑节能技术措施,推动直辖市及严寒寒冷地区率先实施更高的节能标准,逐步提高国家建筑节能的标准。节能,建筑节能,建立和完善建筑能效测评标识制度。制定《建筑能效标识管理办法》及《建筑能效标识技术导则》,选择若干试点城市进行示范,总结经验,逐步推广。建立建筑能耗统计制度。制定《建筑能耗统计标准》,掌握建筑能耗水平、建筑终端商品能耗结构、用能模式,积累建筑能耗基础数据,为制定政策提供依据。各地应充分认识能耗统计工作的重要性,认真组织做好相关工作。推进城镇供热体制改革。加快城镇供热商品化、货币化,将采暖补贴由”暗补“变”明补“,加强供热计量,推进按用热量计量收费制度。完善供热价格形成机制,有关部门要抓紧研究制定建筑供热采暖按热量收费的政策,培育有利于节能的供热市场。
我国”十一五“规划纲要提出单位GDP能耗在五年内要降低20%的任务必须完成,但从已经过去的状况来看,后面几年的工作更加艰巨,故两会也提出国家会加大力度执行和监管。国务院前不久又成立节能减排小组,对高耗能、高污染的生产和经营项目更加严格限制。2000年全国能源消费总量大约为13亿吨标准煤,为此,要求2020年一次能源消费总量控制在25亿吨标准煤左右,节能总量要达到8亿吨标准煤。为此提出了”节能优先,结构多元,环境友好,市场推动“的中国可持续能源战略,以便达到GDP翻两番,能源翻一番的目标。基于这样的形势,把节能从国家层面上提到了前所未有的高度。
与发达国家相比,我国城镇建筑单位面积供暖能耗是同纬度发达国家的2~3倍,而建筑除供暖外的其他用能(照明、空调、家电、建筑设备等)按照单位面积比较,却仅为发达国家的l/5~1/2,因此供暖节能应是我国建筑节能工作中潜力最大、最主要的途径,应该作为当前开展建筑节能工作的重点[5-13]。
1.3国外集中供热的发展概况。
城市集中供热在国外的发展至今已有百年的历史。由于集中供热在节约能源方面和保护环境方面的独特作用而在世界范围内受到日益广泛的重视,特别是前苏联和西北欧气候寒冷的国家。
集中供热系统最早是在18世纪的美国费城发展起来的,当时由本杰明。富兰克林(Benjamin Franklin)开发成功,这个系统从一个中心热源向附近的一些居民进行供热。1877年,世界上第一个商业化运行的集中供热系统在纽约的洛克港(Lorkport)成功建成,该系统由博德希尔·霍利(Birdsill Holly)设计,从一个中央锅炉房向临近的一些居民和其他用户供应蒸汽,这种供热形式很快在西方发达国家得到普及,但由于当时科技水平和制造技术的限制,锅炉容量小、效率低、污染物排放量大、供热范围极为有限。
国外城市集中供热起步较早的国家是德国。1901年在得累斯顿建立集中锅炉房,1909年建立第一个热电厂。德国在第二次世界大战后的废墟重建工作,为发展集中供热创造了有利条件。德国的集中供热技术较为先进,如管道大多采用直埋敷设方式、装配式热力站、优化的热网运行管理和良好的热网自控设施等。目前,除柏林、汉堡、慕尼黑等已有规模较大的集中供热系统外,在鲁尔地区和莱茵河下游,还建立了连接几个城市的城际供热系统。
城市集中供热发展较快的国家是前苏联,居世界首位。1980年原苏联的热电厂总装机容量为9600万kw。全国工业与民用的年总供热量中,70%由集中供热方式,即热电厂和区域锅炉房供热。全国热电厂的年总供热量约为55亿GJ。由于热电联产,单就原苏联能源电力部所属的热电厂来说(占全国热电厂总装机容量的86%)就节约了6800万吨标煤。莫斯科的集中供热系统是世界上规模最大的供热系统。热电厂供热系统供热量占全市用热量的60%,其余由区域锅炉房供热,城市的集中供热普及率高达100%,是全世界集中供热规模最大的城市。
芬兰集中供热占全国总热量的44%,热电联产占集中供热的70%。到1993年芬兰的大城市集中供热率已经达到80%,首都赫尔辛基的热化率已超过90%,成为北欧集中供热热化率最高的城市。
丹麦集中供热占总需求热量的50%,其中热电联产占30%。在丹麦,集中供热作为城市基础设施的组成部分,与电力、通信、燃气、给排水系统等受到同等的重视和发展。1979年丹麦议会通过了”供热法“,该法要求各城市政府在分析本市能源供应的基础上制定了供热总体规划,积极推进集中供热,并最大可能地发展热电联产。他们按大、小城市不同规模因地制宜。大城市建设了世界上大型高效热电联产、集中供热系统。首都哥本哈根有四座热电厂,装机总容量达764MW,总供热能力为3582GJ,在小城市迅速发展小型热电联产、区域供热系统,这些小型热电厂的燃料为天然气、垃圾、稻草、沼气等,技术方案为燃气发动机、燃气轮机和蒸汽轮机等联合循环。小型热电联产成为丹麦能源政策的重要组成部分。
瑞典的集中供热占全国总需求的34%,供热管网总长为650公里,1600万幢公寓和11万个小型建筑均与热网相连,这意昧着集中供热在瑞典的城市和人口稠密的地区得以广泛的建立。集中供热的热源包括燃煤锅炉,燃油锅炉,电加热锅炉,垃圾焚烧锅炉等。
韩国发展城市集中供热的历史与我国相当,也是始于上世纪七十年代末,上世纪八十年代中期进入快速发展阶段。韩国集中供热的规模、设计、施工、运行、管理全面引进芬兰供热先进技术,从实际出发,扬长避短,使供热系统更先进、完善。
法国集中供热占总热量的6.0%,目前约有200余个城市有了集中供热系统,向170万套住宅供热,约有150万人受益。
美国集中供热的发展经过几起几落。80年代以后发展较快。1980~1987年间总计建设各类热电厂1728座,装机容量44940MW。从地区分布情况看,美国各州都有热电厂,最集中的是加利福尼亚州,占总数的39%,其次是德克萨斯州[14-17]。
发达国家在热水系统、区域供热方面开展的时间较长,无论在经验上还是技术上都处于领先位置。在技术方面来看,国外,特别是在北欧国家,从20世纪70年代能源危机以来,十分重视供热系统节能工作,并制定了有关政策、法规以及相配套的技术措施,己经具备了一整套成熟的供热系统运行模式。
1.4我国集中供热存在的问题。
我国集中供热给城市建设、改善人民生活方面带来了不可估量的收益,但是,由于长期受计划经济的影响,存在着供热体制、供热成本、技术水平等方面的问题。本文主要研究技术方面的问题,对于技术水平方面存在的问题分析如下:
1.管网敷设方式落后。供热管网敷设方式普遍采用管沟式,这种方式占地比较多,在城市规划管线综合安排上有一定的困难。尤其在城市中心会遇到大量的拆迁问题,增加了大量的投资。在供热管网建设施工过程中,经常会与城市的整体建设规划产生冲突,与各相关部门的协调配合存在较大问题,增加了施工难度,阻碍了施工进度,甚至无法实施,减缓了城市集中供热的发展速度,导致供热管道及热源的建设赶不上城市发展的需要。
2.管网夏季检修落后。城市供热系统检修手段落后,供热企业在成本、管理方面存在问题,检修不到位,用户冬季反复受到停热的影响,投诉率高,热费收取困难,导致供热企业和热用户间问题频出,用户经常投诉至媒体,供热企业给大众的印象较差。
3.供热系统的控制水平和调节水平落后。供热管网经过多年的发展已经形成规模,但是由于大多数系统没有管网监控系统,热源、热力站自动化程度低,大大降低了系统的经济性和可靠性。
4.供热系统不能适时有效地调节供热流量和供水温度。现有的供热系统只是针对设备的粗放式管理,很少考虑对整个系统主要运行参数进行监控,更没有实现对用户(楼宇)室温的远程监测,无法准确掌握系统供热水平和质量,操作人员只能凭经验调节供热量。另外,由于没有采取气候补偿措施,在实际运行过程中依然只能采用”看天烧火“的传统方式,即通过人工手动方式来调节供热量,不能自动地、实时地进行分时按需供热,造成采暖期初、期末大量浪费热量。
5.运行的室外管网多为枝状管网,二次系统缺乏必要的调节手段,水力失调严重。同时大部分用户不具备分户计量的手段,能源浪费现象严重。如何有效保证供热管网的水力平衡是亟待解决的大问题,另外管网水力调节需要大量的资金、设备及人力投入,在实际操作中仍存在困难。
6.分户控制正在实施中,分户按实际用热量收取热费还在摸索阶段,虽然在全国各地进行了很多试点,很多暖通科研人员也进行了大量研究,但是收费体系、计量方法还没有十分成熟的可供推广的经验,在建造、改造过程中资金投入等还存在很多问题,真正实现分户计量收费还需时日[8,18,19]。
1.5研究的内容与目的。
本文就吉林省某油田生活区的供热运行参数进行分析,对其供热系统运行状况进行诊断,找出存在的问题并提出相应的解决方案,帮助提高其运行效率,节约运行成本。
第二章集中供热的相关理论研究。
2.1混水直供。
2.1.1概述。
供热系统的连接一般有直接连接、间接连接、混水连接三种方式。
直接连接系统是把从热源来的热水直接接入用户管网系统,一般有两种形式:一种比较常见的方式是仅由热源、热网、热用户三部分组成;另一种是增设热力分配站或加压站,形成一二次网,但一二次网的热媒参数完全相同。直接连接系统通常于热力入口处设置简单的计量仪表(压力表、温度计等)和关断、调节阀门,在运行中仅仅是进行流量分配,运行调节比较容易,对运行管理人员技术水平要求较低;由于受到供水温度不能太高、流量不能太小的限制,使得一级网管径较大,管网造价提高;首站循环水泵由于热媒参数低、流量大所以型号也较大,当循环水泵选型合理时,每万平方米水泵功率平均3kw~4kw,供热半径越大,循环水泵功率越大,但大多数直供系统热源的循环水泵选型不尽合理,有的达到每万平方米10kW以上,电耗巨大;供水压力受承压能力的影响不能随意提高,回水受系统最高点的限制也不能任意降低,当高差变化大时需要做特殊处理;管网任意一处大量失水就会影响整个供暖系统的安全运行,系统稳定性比较低;回水直接回到热源,水质难以保证,易腐蚀热源设备;热媒参数单一,对于有多种热媒参数要求的系统不适用;因此,直接连接系统仅适用于热用户集中或供热距离较近的系统[20]。
间接连接的特点是一、二次网通过设置换热站互相隔离,彼此独立,一次网可以输送高温水或蒸汽,热媒参数较高,可以减少流量,一次网的管道管径较小,循环水泵的型号也可以相应减小;而且由于互相隔离,一次网水质水量可以得到保证,有利于锅炉的运行;系统的运行调试相对简单,因此在实际供热运行中得到了广泛的应用。
混水供热模式处于直接连接和间接连接之间,运行工况比较复杂,早期由于缺乏热网平衡设备,同时也难以解决热源对水质的要求,所以应用较少,近年来随着供热技术的发展以及先进监控设备在供热系统中的成功应用,混水加热直供方式也慢慢的找到它自身的控制方式。混水直供因其”大温差、小流量“运行,一次网富余压差在二次网中得以充分利用等特点,具有很大的节能空间,在热网自动控制系统配合下,其应用也得到了越来越广泛的认可[21,22]。
2.1.2混水供水的特点。
1.热损耗较小。
间接连接的方式设置换热器进行换热,在换热的过程中必然存在热量损失,需要考虑传热效率,混水直供相对于间接供热,热利用率更高。
单纯直连方式热网供水直接进入热用户,不进行混水,因此要求一级网温差与用户系统设计温差相等或接近,属于小温差大流量运行方式;混水直连方式一级网供回水温差远大于用户系统设计温差,通过热力站的混水泵进行混水,满足二级网的循环流量,并达到热网的设计温差,实现了大温差小流量运行。
2.维护运行费用低。
结垢会导致换热器传热效率降低,解决方法就是进行除垢清洗和加大流量提高水温强化换热。除垢通常定期每隔一两年进行,部件在拆装过程中容易损坏,维修成本高,而加大流量的方式会导致水泵负担加重,电耗增加。
混水直供热力站由于没有换热器,不但在检修期间相对间接供热方式节省大量的维护费用,而且一级网的富余压差可以保留在二次网中,在二次网中转化为循环动力将热水送往各热用户。
3.初投资费用低。
单纯直连方式与混水直连方式相比,输送相同的热量、热网选取同一经济比摩阻的情况下,前者的管径要大于后者,因此单纯直连方式供热系统的热网建设投资费用较大。
间接连接的方式设置换热器,一次网二次网彼此独立,二次网需要设置单独的定压补水系统,相较于混水热力站而言,占地面积、管道以及设备投资增加。
4.混水直连方式在管径相同,经济比摩阻相同的情况下输送的热量大于直接连接的方式,可带较大供热面积,比单纯直连方式供热系统具有更大的供热能力。
5.混水直连方式热源水质不易得到保证,如采用的水处理方式不当,或根本没有水处理时(实际运行中管理不严可能存在这种情况),就会腐蚀锅炉。混水方式对二次网的水质要求较高。
6.由于采用混水换热以后,整个系统的定压均是采用一次网定压,因此,一次网压力的稳定,直接影响到整个系统运行的稳定。
7.由于在直供混水系统中既存在一级网循环泵,又存在多个热力站的混水泵,这些泵同时串联、并联在同一个大系统中,各台泵的运行工况和各种阀门的调节,都会直接影响一级网和二级网的流量和压力的变化。运行时既要保证一级网的水力平衡和理想的水压图状态,又要保证二级网的供热量和供回水压力,因此运行调节难度大。如果没有较好的调控设备和调节手段,就会造成严重的冷热不均或供回水压力不稳,使供热质量难以保证,并对运行人员的技术水平有较高的要求。
混水供热系统由于其控制相对较复杂,因此要想很好的运行必须有完善的控制系统,也正是因为运行控制系统相对复杂,混水系统在实际中很少得到大面积的应用。但是随着自控系统的使用,供热运行有了”眼睛“,调控有了”依据“,安全有了”预知“,管理有了”数据“,使得混水供热系统的优越性开始显现出来[23,24]。
2.1.3混水的流量与温度的关系式。
混合比和流量、温度具有下式的关系:
相应可知热网所需供水温度为:()ggghtttt1222=+u?
式中:u——混合比;hG——进入混水装置的回水流量,m3/h;1gG——混水装置之前热网供水流量,m3/h;gt1——热网供水温度,℃;ghtt22,——混水装置后的供、回水温度,℃。
2.1.4混水供热系统的三种基本形式。
混水供热系统有水泵旁通加压、水泵回水加压,水泵供水加压三种基本形式,如图2-1,2-2,2-3所示。
1.水泵旁通加压。
变频混水泵设置在混水旁通管路上,一次网供水管上装设流量控制阀,回水管上装设手动调节阀,利用水泵将二次网的一部分回水加压打入一次网供水中,混合形成二次网供水,另一部分回水返回一次网回水管。适用于二次网所需的供回水压力在一次网供回水压力之间。
2.水泵回水加压。
混水泵设置在二次网回水总管上,利用水泵将二次网的回水加压,一部分回水受混水旁通管路上调节阀或者一次网回水管路上调节阀(视水泵出口到一次网总回水与到二次网供水需增压力相对大小而定)支配流入一次网供水混合加热,形成二次网供水,另一部分回水直接返回一次网回水总管。一次网供回水上设置调节阀,水泵采用变频控制。此供热方式适用于二次网所需的回水压力在一次网回水压力以下。
图2-1水泵旁通加压混水系统图,图2-2水泵回水加压混水系统图。
3.水泵供水加压。
变频混水泵设置在二次网供水管上,一次网回水管上装设流量控制阀,供水管和旁通管上各装手动调节阀。调节流量控制阀设定好一次网的流量,同时满足二次网的系统静压。当一次网供水压力高于二次网回水静压时,可调节一次网供水侧手动调节阀,使其阀后压力与二次网回水静压相平衡。利用水泵将二次网一部分回水及一次网供水同时吸入,混合形成二次网供水,另一部分二次网回水直接返回一次网回水管。当一次网供水压力低于二次网回水静压时,调节旁通管上的手动调节阀,使其阀前压力满足二次网系统静压。适用于二次网所需的供水压力在一次网供水压力以上[25-28]。
2.2运行调节。
2.2.1供热运行调节的意义。
冬季供暖是关系城市居民切身利益的大事,直接关系到社会和谐。现在的供暖企业自负盈亏,既要使居民供暖温度达到标准又要使企业的运行成本达到最低,这就要求供暖企业挖掘内部潜力,做好供热调节工作,因此,对整个热水供热系统进行合理的供热调节就变得至关重要。热水锅炉及采暖系统运行过程中除应对运行参数、燃烧工况进行控制与调整外,还应根据采暖季节(初冬还是严寒)、采暖时间(白天还是夜间)等情况对供热量进行调节。供热调节的目的,一是使系统中各用户的室内温度比较适宜;二是避免不必要的热量浪费,实现热水采暖的经济运行[5,29]。
2.2.2供热调节的方法。
运行调节的方法有以下5种:
(1)质调节——改变网路的供水温度;(2)量调节——改变网路的循环水量;(3)分阶段改变流量的质调节——同一阶段流量不变;(4)分阶段改变温度的量调节——同一阶段温度不变;(5)间歇调节——改变每天供暖小时数。
2.2.2.1质调节。
在进行质调节时,只改变供暖系统的供水温度,而系统循环水量保持不变。这种调节方式,网路水力工况稳定,运行管理简便,采用这种调节方法,通常可达到预期效果。集中质调节是目前最为广泛采用的供热调节方式,但由于在整个供暖系统中,网路循环水量总保持不变,消耗电能较多。同时,对于有多种热负荷的热水供热系统,在室外温度较高时,如仍按质量调节供热,往往难以满足其他热负荷的要求。
带有混合装置的直接连接热水供暖系统的网路供回水温度可以按照下式计算:
式中:
nt——供暖室内计算温度,℃;'
sΔt——用户散热器的设计平均计算温差,℃;'
wΔt——网路与用户系统的设计供水温度差,℃;'
jΔt——用户的设计供回水温差,℃;Q——相对供暖热负荷比;b——与散热器型式相关的系数。
根据以上两式即可绘制出质调节的水温曲线。
质调节设计时多采用一用一备或几用几备的配泵方式,选泵原则仍按照泵组的流量不小于系统所需总流量的1.05~1.10倍,还要考虑多台泵并联时的流量下降因素,按照单台水泵的90%确定水泵组的流量;水泵扬程为系统管路和用户满流量时系统总阻力的1.05~1.10倍进行选择,这时,对应的水泵功率已经超过实际所需功率,再加上选泵时习惯向上一挡参数靠拢,根据公式N=0.163rVH/η(kW)可以看出,水泵在选择时已经增加了不少电耗负荷。
2.2.2.2量调节。
在进行量调节时,保持供水温度不变,改变管网的供水流量。
采用量调节可极大地节约电耗。在供热管网管道尺寸已经确定的情况下,流量与电机转数成正比,电耗与频率的三次方成正比。频率与转速的关系为:nfSPn=60(1?)/,n为异步电动机即水泵转速,f为电源频率,Sn为异步电机转差率,一般为5%左右,P为电机绕组的极对数。可以看到,当P和nS一定时,电机即水泵转速与输入电流的频率成正比。水泵的流量G(m/h3)、功率P(kw)和叶轮转速n(r/min)之间的关系由图2-4可以直观的看到,水泵流量与频率也成正比,调节频率即调节转速,可由变频器直接调节循环水泵。如果流量减少30%,电功率就可节省65.7%。对于多数地区在很长一段运行时间内用70%左右的流量运行,年减少电耗40%左右是不成问题的,节能效果可观,而且量调节对用户用热量变化的响应比质调节快得多,这是因为质调节的温度变化从热源到用户的传递是以流速进行,而量调节是以声速传递,其响应几乎是同步的,采用关断阀、调节阀或平衡阀的方法,初投资较小。但是采用流量调节时,随着室外温度升高,网路水流量减少过多,会引起供暖系统产生较严重的竖向热力失调。为降低电耗,在采暖系统中可以设置两台不同规格型号的循环泵,其中一台循环泵的流量和扬程按计算值的100%选择,另一台循环泵的流量和扬程按计算值的75%选择,后者供室外温度高的情况下使用。这样可以大大提高循环泵的运转经济指标[30]。
2.2.2.3分阶段改变流量的质调节。
分阶段改变流量的质调节是把整个供暖期按室外温度的高低分成几个阶段:
在室外温度较低的阶段中管网保持较大的流量,而在室外温度较高的阶段中管网保持较小的流量。在每一个阶段内,网路均采用一种流量并保持不变,同时采用不断改变网路供水温度的质调节。对于带有混水装置的供暖系统网路供回水温度可以按照下式计算:
式中:?——相对流量比。
在热水供暖系统中,供暖系统规模较大的系统可分为三个阶段,规模较小的系统分为两个阶段,运行调节以及泵组的设置如表2-1,2-2所示。
表2-1分三阶段改变流量的质调节。
在三阶段划分的系统中,水泵扬程为管道满流量设计扬程的100%、64%和36%,对应的理论计算水泵轴功率分别为满负荷功率的100%、51%和22%;在两阶段划分的系统中,水泵扬程为管道满流量设计扬程的100%和51%,对应的轴功率分别为100%和42%。多种容量的循环水泵在一定程度上可以互为备用,采用分阶段变流量的质调节时,热水供暖系统中可以不设备用泵。这种调节方法综合了质调节和量调节的优点,既较好地避免了垂直失调,又显著地节省了电能。
由于控制技术的迅速发展,特别是变频技术为水泵的变速运行带来了方便,使得供热系统同步实行质和量的综合调节成为可能。在此基础上,又开发出多种节能辅助设备,例如末端温控装置、气候补偿器、锅炉控制器等节能产品,这些产品与变频调速技术联用,取得很好的节能效果。
2.2.2.4分阶段改变供水温度的量调节。
在供暖系统的整个运行期间,随着室外温度的提高,分几个阶段改变供水温度,在同一阶段内供水温度不变,改变流量来进行调节。即在室外气温较低的阶段保持较高的供水温度,在气温较高的阶段保持较低的供水温度,而在每一个阶段内采用改变系统流量的量调节。
在这种条件方法中,同样按照供暖系统规模大小划分阶段,系统较大的划分为三个阶段,较小的为两个阶段,运行调节设置情况如表2-3,2-4所示。
表2-3分三阶段改变供水温度的量调节,表2-4分两阶段改变供水温度的量调节。
分阶段改变供水温度的量调节是质调节和量调节的结合,与单纯量调节方式相比,在室外温度较高的供暖阶段,通过降低供水温度,提高回水温度,增加了系统的循环流量。分阶段的变化靠热源处的气候补偿器控制,系统流量的变化靠循环水泵变速调节。
2.2.2.5间歇调节。
间歇调节是在供水温度和循环水量不变的情况下,用减少每天的供暖时数来调节的方法。在室外温度达到设计值时,热源连续供暖,随着室外温度的升高,逐渐减少运行时间,它的前提是假设热源能在额定出力的情况下制定运行时间。如果热源达不到额定出力,将不能保证用户的供热质量。事实上要想使设备
 
关键词: 技术 节能
0
 
[ 技术搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

0相关评论

相关文章

  • 精彩推荐
  • 中国节能网
  • 中国节能网
  • 中国节能网
  • 中国节能网
  • 中国节能网
网站首页  |  关于我们  |  我们宗旨  |  我们使命  |  我们愿景  |  组织机构  |  领导机构  |  专家机构  |  管理团队  |  机构分布  |  联系方式  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  京ICP备050212号-1